26 avril 2015

L'apparition de l'ADN primordial

Un indice de plus dans la grande quête de l'origine de la vie sur Terre:

The self-organization properties of DNA-like molecular fragments four billion years ago may have guided their own growth into repeating chemical chains long enough to act as a basis for primitive life, says a new study by the University of Colorado Boulder and the University of University of Milan.

While studies of ancient mineral formations contain evidence for the evolution of bacteria from 3.5 to 3.8 billion years ago -- just half a billion years after the stabilization of Earth's crust -- what might have preceded the formation of such unicellular organisms is still a mystery. The new findings suggest a novel scenario for the non-biological origins of nucleic acids, which are the building blocks of living organisms, said CU-Boulder physics Professor Noel Clark, a study co-author.

(...) The new research demonstrates that the spontaneous self-assembly of DNA fragments just a few nanometers in length into ordered liquid crystal phases has the ability to drive the formation of chemical bonds that connect together short DNA chains to form long ones, without the aid of biological mechanisms. Liquid crystals are a form of matter that has properties between those of conventional liquids and those of a solid crystal -- a liquid crystal may flow like a liquid, for example, but its molecules may be oriented more like a crystal.

"Our observations are suggestive of what may have happened on the early Earth when the first DNA-like molecular fragments appeared," said Clark.

(...) "The new findings show that in the presence of appropriate chemical conditions, the spontaneous self assembly of small DNA fragments into stacks of short duplexes greatly favors their binding into longer polymers, thereby providing a pre-RNA route to the RNA world," said Clark.



Aucun commentaire: